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Abstract 

In this paper, ductile failure in destructive manufacturing processes such as metal 
drilling is modeled using a truly meshfree method, i.e., the smoothed particle Galerkin 
(SPG) method.  The SPG weak form is integrated using the direct nodal integration (DNI) 
technique with non-residual penalty type stabilization derived from strain (displacement) 
smoothing so that the numerical scheme is efficient and stable.  The SPG theory is briefly 
reviewed and the bond failure mechanism for material failure analysis is elaborated in this 
paper.  The setup for an LSDYNA SPG analysis is also presented.  To demonstrate the 
performance of the SPG method, a metal drilling process is analyzed using the SPG 
formulation.  The sensitivity of the numerical results to the bond failure criteria, the nodal 
support size, the frequency of SPG kernel updating, and the coefficient of friction is 
thoroughly studied in the numerical example.  The results are also compared to limited 
experimental data. 
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1. Introduction 

Material failure frequently occurs in destructive manufacturing processes in 
automotive industry, furniture manufacturing and other applications for joining 
irresponsible parts, such as FDS (flow drill screw), SPR (self pierce riveting), metal 
blanking, cutting, drilling, grinding, machining, shearing, tapping, etc.  To obtain the 
desired outcome from these processes is difficult due to many parameters such as operation 
speed, material properties, interface friction, geometry, etc.  It is not practical to do 
experiments to obtain optimized designs due to the cost and time.  Therefore, numerical 
analysis has been playing an important role in the design of these processes. 

Traditionally, finite element method (FEM) is applied in all sorts of CAE (computer 
aided engineering) analysis, such as compression molding, extrusion, forging, spring back, 
etc.  Large deformation occurs in these processes.  However, material failure is less likely 
to occur.  To deal with material failure in destructive manufacturing, element erosion 
technique is widely applied in FEM.  The criterion for element erosion is usually ad-hoc 
and the results are very sensitive to the criterion.  Meanwhile, adaptive FEM and EFG 
(element free Galerkin) are also developed to deal with this type large deformation induced 
material failure.  However, the process is tedious and not user friendly.  SPH (smoothed 
particle hydrodynamics) and ALE (arbitrary Lagrangian Eulerian) approaches are also 
applied in the analysis of material failure.  Nonetheless, SPH is known to have various 
numerical deficiencies such as lack of approximation consistency, tension instability, and 
complication in enforcing essential boundary conditions.  Both SPH and ALE have 
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difficulty in tracking the formation of new surfaces and are not able to prevent material 
self-healing in failure analysis. 

To more physically treat material failure in destructive manufacturing processes, a 
genuine meshfree method, the smoothed particle Galerkin (SPG) method [1, 2, 3], was 
developed recently.  The SPG method is a residual based Galerkin meshfree method. Its 
weak form is integrated using the direct nodal integration (DNI) technique to improve 
computational efficiency.  A strain operator derived from displacement smoothing theory 
is used in the SPG formulation for stabilizing the DNI scheme.  This stabilization 
formulation is parameterized by a measure of the local length scale without using a 
stabilization control parameter.  As such, the SPG formulation has been applied to the 
analysis of damage-induced strain localization in elastic materials [3], ductile fracture in 
two-dimensional explicit dynamics [5], three-dimensional concrete perforation and 
penetration [7] and three-dimensional destructive metal grinding applications [6]. 

In this paper, the SPG method is employed to analyze a friction drilling process along 
with sensitivity study of the SPG parameters. The remaining this paper is organized as 
follows: the basic SPG formulations and the strain based SPG bond failure mechanism are 
introduced in Section 2.  Section 3 presents the application of the SPG method in the 
analysis of a friction drilling process.  Concluding remarks are made in the final section. 

 
2. Formulations 
2.1. The SPG shape function 

The strong form of a boundary – initial value problem can be stated as: find the 
displacement field  , tu x  such that: 

    , ,t t    u x σ x b 0   (1) 

with boundary and initial conditions given as follows: 
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where   is the material density,  , tσ x  is the Cauchy stress, h  is the surface traction 

applied on Neumann boundary h  and n  is the outward normal, b  is the body force, g  is 

the essential boundary condition applied on Dirichlet boundary g , and 0v  is the initial 

velocity applied on boundary t . 

The variational form can be written as: 
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Correspondingly, the semi-discrete equation based on meshfree approximation can be 
derived as: 
 intext Mu f f   (4) 
where 
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where I  is the meshfree shape function of displacement approximation, IB  is the 

gradient of shape function, and Σ  is the stress vector determined by material constitutive 
law and can be cast into:  

  11 22 33 12 23 31

T     Σ   (7) 

The general form of meshfree displacement approximation can be written as: 
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where  K x  is the regular meshfree shape function. 

To integrate Eq.(6) efficiently, direct nodal integration (DNI) is used in this study.  
However, DNI is known to suffer from rank deficiency [4].  To remove this instability, a 
penalty based strain gradient stabilization is derived from displacement smoothing theory 
[1, 2, 3] and thus the numerical method is named as the smoothed particle Galerkin (SPG).  
The displacement smoothing is written as: 
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where  Kw x  is the displacement smoothing function, which could be, in general, 

different from the displacement approximation shape function.  However, for simplicity 
and efficiency, it is usually taken as the same shape function, and consequently, the SPG 
shape function and its derivatives can be written as: 
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Finally, the gradient of the SPG shape function can be derived as: 
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The derivation of the stabilization term and numerical algorithms for implementation 
are documented elsewhere [2, 6, 7] and thus they are omitted in this paper.  The critical 
time step for the central difference time integration of Eq.(4) in the explicit dynamics 
analysis is governed by the Courant-Friedrichs-Lewy (CFL) condition and is determined 
following the developments in [8] for the numerical studies. It is worthwhile to note that 
the meshfree time steps in the explicit dynamics analysis are controlled implicitly [8] by 
the radius size of the support of the SPG shape function in the displacement approximation 
instead of the closet nodal distance or element size as in the FEM; therefore they will not 
be cut down abruptly due to severe material deformation. 
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2.2. Strain-based bond failure mechanism 

Destructive manufacturing processes, such as blanking, cutting, drilling, grinding, and 
riveting are very large deformation processes with material failure and separation.  If these 
processes are analyzed by continuum mechanics, excessive straining will inevitably occur 
due to the severe deformation.  As a result, the discontinuity in the displacement field is 
not captured which leads to spurious damage growth in material failure analysis.  The 
spurious damage growth eventually causes the numerical breakdown due to non-unique 
mapping between the current and the reference configuration in a Lagrangian analysis. 

A strain-based bond failure mechanism is implemented in the SPG framework so that 
displacement discontinuity can be captured and furthermore, the spurious damage growth 
is prevented.  It’s named “strain-based” because the failure criterion is the effective plastic 
strain calculated from the material constitutive law in the application to manufacturing 
process analysis.  In specific, two neighboring particles are considered disconnected during 
the neighbor particle searching whenever their averaged effective plastic strain reaches a 
critical value.  In other words, for a pair of nodes I and J, the SPG shape function in Eq.(11) 
can be redefined as: 
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where     / 2p p p
KJ K J     x x  is the averaged effective plastic strain of nodes K  

and J  and 
p
critε  is its critical value, /KJ K J K Je   x x X X  is the relative stretch 

between nodes K  and J , where x  and X  are the current and reference coordinates. 
The bond failure mechanism is illustrated in Figure 1.  The big blue circle represents 

the support of node 2, and the big red circle represents the support of node 1.  Initially, 
there are 5 bonds connected to node 2, i.e., bonds 2-1, 2-8, 2-9, 2-3, and 2-10.  There are 7 
bonds connected to node 1, i.e., bonds 1-2, 1-8, 1-7, 1-5, 1-4, 1-6, and 1-10.  Assume the 

failure criteria for bond 1-2 are satisfied, i.e.,    12 1 2 / 2p p p p
crit       x x  and 

12 crite e , then bond 1-2 is broken.  Therefore,  2 1 0 x  and  1 2 0 x .  However, 

 2 0 3,8,9,10k k  x  and  1 0 4,5,6,7,8,10k k  x , which means all the other 

bonds except bond 1-2 are still connecting.  This indicates that the state variables (i.e., 
stress and strain) at nodes 1 and 2 will still evolve regularly according to the deformation 
and material law.  The only change is that their neighboring particles have one less node. 
Therefore, unlike the finite element failure mechanism, where the element is eroded (loss 
of mass) according to an ad-hoc criterion and the element stress is set to zero (loss of 
momentum) when failure occurs, the SPG bond failure mechanism preserves the mass and 
momentum.  It should be pointed out that since the effective plastic strain at each particle 
is monotonically increasing during the course of deformation, the kinematic disconnection 
(i.e., bond failure) between two particles in a pair is considered as a permanent and 
irreversible process.  This is a substantial characteristic of the SPG method in metal ductile 
failure analysis since the non-physical material self – healing issue is completely exempted 
from the modeling of the failure process. 
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Figure 1. Illustration of SPG bond failure mechanism. 
 

2.3. LSDYNA keywords for SPG analysis 
The SPG formulation is implemented into the commercial software LSDYNA® [11].  

Most of the SPG functions are available in R10, which was released on July 5, 2017.  To 
setup an SPG analysis, the exact same discretization as for an FEM analysis is used except 
an additional flag to activate the SPG formulation for the particular part in the model that 
is to be approximated by SPG. 

 

 
 

 

Figure 2. Setup for SPG analysis: (a) discretization of problem domain, (b) control cards. 
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Figure 2 illustrates the setup for an SPG analysis.  The problem domain is all discretized 
by finite elements initially and then it’s separated into part 1 and part 2.  Part 1 is flagged 
to SPG formulation through SECID = 1 which is defined by *SECTION_SOLID_SPG, 
and is displayed as spheres since it’s a particle method.  Part 2 is assigned to regular FEM 
formulation through SECID = 2.  However, *ELEMENT_SOLID is used for both parts 
(i.e., no special keyword for the “element” output for SPG discretization).  The interface 
between part 1 and part 2 shares common nodes.  The coupling between FEM and SPG is 
naturally dealt with by the shared nodes [6].  It should be pointed out that the “FS” defined 

on the “*SECTION_SOLID_SPG” card is the critical effective plastic strain 
p
critε  for the 

SPG bond failure.  It is also worthy of pointing out that “STRETCH” (always greater than 
or equal to 1.0) defined on the “*SECTION_SOLID_SPG” card is to assure that SPG bond 
(formed by a pair of nodes) only fails under relative tension. 

 
3. Application of the SPG method 

To demonstrate the effectiveness of the SPG method in modeling ductile failure in 
destructive manufacturing processes, a metal drilling process is analyzed and compared 
with limited experimental data in this section.  If not otherwise specified, the normalized 
SPG support size is 1.6 and the Eulerian kernel is updated every 15 time steps in the explicit 
dynamic analysis. 

 
3.1. Drilling of AISI 304 steel 

A disk of AISI 304 stainless steel with 18 mm diameter and 1.5 mm thickness was used 
in the experiment of a drilling process [12].  The geometry of the tool is shown in Figure 3 
(a).  The setup and the numerical discretization of the drilling process are shown in Figure 
3 (b).  The tool is modeled by rigid tetrahedral finite elements.  The tool rotates at 3000 rpm 
and plunges at 100 mm/min in the test.  The central area of 6.4 mm by 6.4 mm is discretized 
by SPG particles with nodal distance approximately at 0.2 mm.  The remaining workpiece 
is modeled by hexagonal finite elements.  The perimeter of the workpiece is clamped.  The 
Johnson – Cook material law is applied for the workpiece for both the SPG and finite 
element discretizations.  However, the Johnson – Cook damage law is not used since the 
failure process is modeled by the SPG bond failure mechanism.  According to efunda 
(www.efunda.com), the Young’s modulus of the workpiece is set to 193 GPa, and the yield 
strength is set to 205 MPa, and the effective plastic strain for bond failure is set to 0.4.  The 
other material parameters are taken from the reference [12].  The coefficient of friction 
(COF) between the tool and the workpiece is set to 0.2 for the node-to-surface contact in 
the numerical analysis. 
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Figure 3. Drilling of steel: (a) tool geometry, (b) discretization and boundary conditions. 
 

Figure 4 shows the thrust force and torque histories obtained from the coupled 
FEM/SPG and FEM simulations respectively.  The thicker liner are the test data and the 
lighter curves are the numerical results.  Considering that in the test, the temperature on 
the upper side of the plate at the contact zone reaches 569ºC, but the thermal effect is 
ignored in the simulation (coupled thermal – mechanical SPG analysis is still under 
development), the coupled FEM/SPG solution matches the test data reasonably well.  On 
the other hand, due to loss of mass and momentum in FEM with erosion process, the FEM 
approach does not build up force and momentum.  Figure 5 shows the evolution of effective 
plastic strain in the drilling process.  Material fracture on the back side is clearly observed.  
It is important to point out that the effective plastic strain for SPG bond failure is 0.4, but 
the effective plastic strain in the material reaches 0.7 or more.  The reason is the material 
continues to evolve stress and strain after bond failure (as explained earlier) until all the 
bonds fail. 

 

   

Figure 4. Drilling - thrust force and torque histories: (a) SPG solution, (b) FEM solution. 
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Figure 5. Drilling: progressive deformation (SPG solution). 
 

3.2. Parameter study 
3.2.1. Sensitivity to bond failure criteria 

Figure 6 shows the thrust force and torque histories for two sets of bond failure criteria, 
i.e., the effective plastic strain of 0.4 and 0.7 for SPG bond failure respectively.  Nearly no 
dependence is observed.  It should be pointed out that the COF used for these analyses is 
0.3, and the Young’s modulus and yield strength for the workpiece is 207.8 GPa and 
280 MPa respectively.  It is seen that the torque is much higher than the test observation 
(2.5 N-m, c.f. Figure 4), which in turn indicates that physically modeling the contact 
interface is very important for this type of problem. 
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Figure 6. Drilling – sensitivity to SPG bond failure criteria: (a) thrust force, (b) torque. 
 

3.2.2. Sensitivity to coefficient of friction (COF) and material strength 
Figure 7 shows the thrust force and torque histories for two materials and two COFs. 

“0.15” and “0.20” on the legend refer to COF of 0.15 and 0.20 respectively. “m1” refers to 
a material with Young’s modulus of 207.8 GPa and yield strength of 280 MPa, and “m2” 
refers to a material with Young’s modulus of 193 GPa and yield strength of 205 MPa.  
Figure 7 (a) indicates that the thrust force has a high dependence on material strength while 
very limited dependence on COF.  Figure 7 (b) reveals that the torque highly depends on 
the interface friction, which is physical since the torque is generated solely due to friction.  
These observations imply that to physically model the material and the interface is very 
important in this type of analysis. 

 

      

Figure 7. Drilling – sensitivity to COF and yield strength: (a) thrust force, (b) torque. 
 

3.2.3. Sensitivity to kernel update frequency 
Figure 8 shows the thrust force and torque histories for various SPG kernel update 

frequencies.  The SPG kernels are updated every 15 and 30 explicit time steps in the 
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calculations respectively.  Some sensitivity is observed on the thrust force while much less 
sensitivity is observed on the torque. 

 

      

Figure 8. Drilling – sensitivity to kernel update frequency: (a) thrust force, (b) torque. 
 

3.2.4. Sensitivity to normalized support size 
Figure 9 shows the thrust force and torque histories for various normalized support 

sizes.  The normalized support sizes used in the calculations are 1.6 and 1.8 respectively.  
Not very much sensitivity is observed.  

 

    

Figure 9. Drilling – sensitivity to normalized support size: (a) thrust force, (b) torque. 
 

4. Conclusion 
In this paper, the smoothed particle Galerkin (SPG) method is applied in the analysis 

of ductile failure in destructive manufacturing process.  The SPG weak form is efficiently 
integrated by the direct nodal integration (DNI) scheme, while the rank deficiency of DNI 
is alleviated by a non-residual penalty type stabilization derived from displacement 
smoothing theory.  Meanwhile, to deal with material failure in destructive manufacturing 
processes, a strain – based bond failure mechanism is implemented.  With the bond failure 
mechanism, no element or mass is deleted after failure, and thus mass and momentum are 
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conserved, which is in sharp comparison with element erosion type of failure mechanism 
in finite element models. 

A drilling process is analyzed with the SPG method.  Very promising results are 
obtained both qualitatively and quantitatively.  The numerical results show sensitivity to 
material strength, coefficient of friction between tool and workpiece, which is physical.  
On the other hand, the results do not show too much sensitivity to the bond failure criteria, 
which makes the numerical scheme robust and reliable since the major criteria for bond 
failure do not need to be tuned, which compares dramatically different from element 
erosion type finite element analysis.   
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