Card 1

Variable	SECID	ELFORM	SHRF	NIP	PROPT	\ldots		
Type	F	F	F	I	F			
Default								

ELFORM EQ. 41: EFG shell (local projection)
EQ. 42: EFG shell (iso-parametric mapping)
EQ. 43: EFG 2D plane strain
EQ. 44: EFG 2D axisymmetric (y-axis of symmetry)

Card 3 define only for the EFG option

Variable	DX	DY	ISPLINE	IDILA	IEBT	IDIM
Type	F	F	I	I	I	I
Default	1.1	1.1	0	0	1	2

$$
\begin{aligned}
& \text { *SECTION_SHELL_EFG } \\
& 6,41 \\
& 1.1,1.1,,, 4,1
\end{aligned}
$$

DX, DY, ISPLINE same as in *SECTION_SOLID_EFG

IDILA: not available

Essential boundary condition treatment

Variable	DX	DY	ISPLINE	IDILA	IEBT	IDIM
Type	F	F	I	I	I	I
Default	1.01	1.01	0	0	-1	2

IEBT EQ. 1: Full transformation (default)
EQ.-1: (w/o transformation)
EQ. 3: Coupled FEM/EFG = Smoothed Finite Element Method (SFEM)
Wu et. al. IJNME (2014); Comp. Mech. (2014)

*SECTION_SHELL_EFG (3)

Domain integration method

Variable	DX	DY	ISPLINE	IDILA	IEBT	IDIM
Type	F	F	I	I	I	I
Default	1.01	1.01	0	0	-1	0

ELFORM = 41
IDIM EQ.1: first-kind Local boundary condition method EQ.2: Gauss integration (default)

ELFORM $=42$
IDIM EQ.1: first-kind Local boundary condition method (default) EQ.2: second-kind Local boundary condition method

- ELFORM $=41$ is more suitable for crashworthiness analysis
- ELFORM = 42 is more suitable for metal forming analysis

Meshfree Shell Surface (1)

ELFORM = 41: Global Approach

Meshfree Shell Surface Representation

$$
E_{0}:=\left\{\boldsymbol{X}_{\text {mid }} \in \mathbb{R}^{3} \mid \boldsymbol{X}_{\text {mid }}(\xi, \eta)=\phi(\xi, \eta)\right\}
$$

- Surface parameterization based on FE mesh + MLS [Krysl and Belystchko 1996]

■ Lagrange polynomials + MLS [Noguchi et al. 2000]

- 3D RKPM with extra constraints [Chen and Wu 2001]

■ Angle-based triangular flattening [Sheffer and Sturler, 2001] + MLS

Advantage: Handle complex manifold surface; Conforming shape functions
Disadvantage: Requires multiple parametric domains for spherical \& cylindrical structures

Meshfree Shell Surface (2)

ELFORM = 42: Local Approach

Advantage: Handle complex geometry
Disadvantage: Non-conforming shape functions

$$
\Psi_{I}\left(X_{J}\right) /_{M-\text { plane }} \neq \Psi_{I}\left(X_{J}\right) /_{N-p \operatorname{lnene}}
$$

Remedy: (Area-weighed) smoothing

$$
\psi_{I}\left(\boldsymbol{X}_{J}\right)=\sum_{I E=I}^{N I E} \frac{\Psi_{I}\left(\boldsymbol{X}_{J}\right) \bullet A_{N I E}}{\sum A_{N I E}} \Rightarrow \sum_{I=I}^{N P} \psi_{I}(\boldsymbol{X}) X_{i I}^{N}=X_{i}^{N} \forall \boldsymbol{X} \in E_{0} /_{\text {plate }}
$$

where
NIE is the number of surrounding projected planes evaluated at X_{J}

Constructed Meshfree Surface

