Two-Stage SPG Algorithm for Joint Performance Analysis Youcai Wu Computational & Multiscale Mechanics Group Livermore Software Technology, an ANSYS Company December 28, 2020 ## Introduction #### Objectives - To perform two-stage analysis with SPG - First stage: joining process analysis - Example procedures: Self Piercing Riveting (SPR), Flow Drill Screwing (FDS), Anchor Setting - Second stage: joint performance analysis - Can have new: materials, parts and boundary conditions - Example procedures: Lap Shear, Coach Peel, Cross Tension, Pullout #### Approaches - At the end of 1st stage, write out history variables - *INTERFACE SPRINGBACK LSDYNA - Output FEM history variables and total displacement of the whole model - *INTERFACE_SPG_1 - Output SPG variables - At the beginning of 2nd stage, read and map history variables from 1st stage - *INTERFACE_SPG_2 - Read SPG variables from 1st stage calculation - "dynain" generated by "*INTERFACE_SPRINGBACK_LSDYNA" in 1st stage should be used - Setup for First Stage Part Set for "dynain" - Keyword: *INTERFACE_SPRINGBACK_LSDYNA - Part set for "*INTERFACE_SPRINGBACK_LSDYNA" - Including all the parts that will be used in the 2nd stage - SPG parts as well, since latest coordinates are needed for all nodes - Excluding those are NOT used in the 2nd stage #### Setup for First Stage Output SPG Variables - Keyword: *INTERFACE_SPG_1 - No parameter, just one line - An ASCII file named "1234spg" will be generated at termination - The file contains information of: - Stress and effective plastic strain at SPG nodes - SPG NIDs and their corresponding NIDs of neighboring particles, support sizes, IDAM variable, nodal density, nodal active or not - Total displacement at all nodes #### Setup for Second Stage - "dynain" generated at 1st stage must be included as an input file - Copy "1234spg" generated at 1st stage to current folder and rename as "1234spg0" - Add keyword: *INTERFACE_SPG_2 - No parameter, just one line - NOT "*INTERFACE_SPG_1" - Tips - Element connectivity and nodal coordinates in 1st stage input files need to be deactivated since the ones in "dynain" are used in 2nd stage ## Responses of SPR Joint Lap Shear (Section View) Plastic strain at termination of 1st stage and the beginning of 2nd stage as well Animation of 2nd stage Plastic strain at termination of 2nd stage #### Summary for Two-Stage SPG Analysis - 1st stage analysis - *INTERFACE_SPRINGBACK_LSDYNA - Define a part set including all parts that are used in 2nd stage - *INTERFACE_SPG_1 - All other keywords as for a regular FEM/SPG analysis - 2nd stage analysis - *INTERFACE_SPG_2 - Copy "1234spg" from 1st stage and rename as "1234spg0" - Include "dynain" from 1st stage as an input file - All other keywords as for a regular FEM/SPG analysis - Availability - Both SMP and MPP supported - A latest beta version (newer than commit 469ae95c0 on Dec. 18, 2020) should be used - 1st stage and 2nd stage are completely independent simulations # **/\nsys**