## **Two-Stage SPG Algorithm for Joint Performance Analysis**

Youcai Wu

Computational & Multiscale Mechanics Group Livermore Software Technology, an ANSYS Company

December 28, 2020



## Introduction

#### Objectives

- To perform two-stage analysis with SPG
  - First stage: joining process analysis
    - Example procedures: Self Piercing Riveting (SPR), Flow Drill Screwing (FDS), Anchor Setting
  - Second stage: joint performance analysis
    - Can have new: materials, parts and boundary conditions
    - Example procedures: Lap Shear, Coach Peel, Cross Tension, Pullout

#### Approaches

- At the end of 1st stage, write out history variables
  - \*INTERFACE SPRINGBACK LSDYNA
    - Output FEM history variables and total displacement of the whole model
  - \*INTERFACE\_SPG\_1
    - Output SPG variables
- At the beginning of 2<sup>nd</sup> stage, read and map history variables from 1<sup>st</sup> stage
  - \*INTERFACE\_SPG\_2
    - Read SPG variables from 1<sup>st</sup> stage calculation
  - "dynain" generated by "\*INTERFACE\_SPRINGBACK\_LSDYNA" in 1st stage should be used



- Setup for First Stage Part Set for "dynain"
  - Keyword: \*INTERFACE\_SPRINGBACK\_LSDYNA
  - Part set for "\*INTERFACE\_SPRINGBACK\_LSDYNA"
    - Including all the parts that will be used in the 2<sup>nd</sup> stage
      - SPG parts as well, since latest coordinates are needed for all nodes
      - Excluding those are NOT used in the 2<sup>nd</sup> stage





#### Setup for First Stage Output SPG Variables

- Keyword: \*INTERFACE\_SPG\_1
  - No parameter, just one line
  - An ASCII file named "1234spg" will be generated at termination
    - The file contains information of:
      - Stress and effective plastic strain at SPG nodes
      - SPG NIDs and their corresponding NIDs of neighboring particles, support sizes, IDAM variable, nodal density, nodal active or not
      - Total displacement at all nodes



#### Setup for Second Stage

- "dynain" generated at 1st stage must be included as an input file
- Copy "1234spg" generated at 1<sup>st</sup> stage to current folder and rename as "1234spg0"
- Add keyword: \*INTERFACE\_SPG\_2
  - No parameter, just one line
  - NOT "\*INTERFACE\_SPG\_1"
- Tips
  - Element connectivity and nodal coordinates in 1<sup>st</sup> stage input files need to be deactivated since the ones in "dynain" are used in 2<sup>nd</sup> stage



## Responses of SPR Joint Lap Shear (Section View)







Plastic strain at termination of 1<sup>st</sup> stage and the beginning of 2<sup>nd</sup> stage as well

Animation of 2<sup>nd</sup> stage

Plastic strain at termination of 2<sup>nd</sup> stage



#### Summary for Two-Stage SPG Analysis

- 1<sup>st</sup> stage analysis
  - \*INTERFACE\_SPRINGBACK\_LSDYNA
    - Define a part set including all parts that are used in 2<sup>nd</sup> stage
  - \*INTERFACE\_SPG\_1
  - All other keywords as for a regular FEM/SPG analysis
- 2<sup>nd</sup> stage analysis
  - \*INTERFACE\_SPG\_2
    - Copy "1234spg" from 1st stage and rename as "1234spg0"
  - Include "dynain" from 1st stage as an input file
  - All other keywords as for a regular FEM/SPG analysis
- Availability
  - Both SMP and MPP supported
    - A latest beta version (newer than commit 469ae95c0 on Dec. 18, 2020) should be used
  - 1st stage and 2nd stage are completely independent simulations



# **/\nsys**

