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Abstract 
 
This paper presents the implementation of an adaptive smoothed particle hydrodynamics (ASPH) method for high strain Lagrangian 

hydrodynamics with material strength in LS-DYNA®. In standard SPH, the smoothing length for each particle represents the spatial 

resolution scale in the vicinity of that particle and is typically allowed to vary in space and time so as to reflect the local value of the 

mean interparticle spacing. However, in the presence of strongly anisotropic volume changes which occur naturally in most of the 

applications the local mean interparticle spacing varies not only in time and space, but in direction as well. In ASPH, the isotropic 

kernel in the standard SPH is replaced with an anisotropic kernel whose axes evolve automatically to follow the mean particle 

spacing as it varies in time, space, and direction around each particle. By deforming and rotating these ellipsoidal kernels so as to 

follow the anisotropy of volume changes local to each particle, ASPH can capture dimension-dependent features such as anisotropic 

deformations with a more generalized elliptical or ellipsoidal influence domain. Some numerical examples are investigated using both 

SPH and ASPH, also higher order kernel function is studied for both SPH and ASPH formulation. The comparative studies show that 

ASPH has better accuracy than the standard SPH when being used for high strain hydrodynamic problems with inherent anisotropic 

deformations, also higher order kernel function has better accuracy than the standard cubic kernel function. 

 

 

Introduction 

 
SPH is a Lagrangian method for solving partial differential equations. Essentially, the domain is discretized by 

approximating it by a series of roughly equal spaced particles. They move and change their properties (such as 

temperature) in accordance with a set of ordinary differential equations derived from the original governing 

PDEs. SPH was first applied by Lucy (1977) to astrophysical problems, and then was extended by Gingold 

(1982). Cloutman (1991) used SPH to model hypervelocity impacts. Libersky and Petschk have shown that 

SPH can be used to model materials with strength. In recent years it has been developed as a method for 

incompressible isothermal enclosed flows by Monaghan (1994).   

 

The standard SPH method uses an isotropic smoothing kernel, which is characterized by a scalar smoothing 

length. One of the problems associated with the standard SPH is that the isotropic kernel of SPH can be 

seriously mismatched to the anisotropic volume changes that generally occur in many problems. To closely 

match the anisotropic volume changes, an anisotropic smoothing kernel that can be characterized by a matrix 

(2D) or a tensor (3D) smoothing length can be efficacious. This leads to the development of the adaptive 

smoothed particle hydrodynamics in which the smoothing length can be adapted with the volume changes or 

other dimension-dependent features. The idea of using anisotropic kernel with SPH dates back to Bicknell and 

Gingold. Shapiro et al. first began investigating a generalized approach using an ellipsoidal kernel in SPH. 

Fulbright et al. also presented a three-dimensional SPH designed to model systems dominated by deformation 

along a preferential axis using spheroidal kernels. Later Shapiro et al. systematically introduced anisotropic 

kernels, tensor smoothing and shock tracking to SPH to create ASPH. Owen et al. presented an alternative 

formulation of the ASPH algorithm for evolving anisotropic smoothing kernels. Except for problems with 

anisotropic deformations, the concept of elliptical kernel has also been applied to channel flows with very large 

length width ratio for saving computational efforts. The numerical results presented in the references further 
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demonstrated that ASPH has better performance than the standard SPH in terms of resolving ability for a wide 

range of problems. 

 

The cubic spline function has been, so far, the most widely used smoothing function in the emerged SPH 

literatures since it resembles a Gaussian function while having a narrower compact support. However, the 

second derivative of the cubic spline is piecewise linear functions, and accordingly, the stability properties can 

be inferior to those of smoother kernels. In addition, the smoothing function is in pieces, which is slightly more 

difficulty to use compared to one piece smoothing functions. Morris introduced higher order (quartic and 

quantic) splines that are more closely approximating the Gaussian and more stable. 

        

This paper presents the implementation of an adaptive smoothed particle hydrodynamics (ASPH) method for 

high strain Lagrangian hydrodynamics with material strength in LS-DYNA. Some numerical examples are 

investigated using both SPH and ASPH, also higher order kernel function is studied for both SPH and ASPH 

formulation. The comparative studies show that ASPH has better accuracy than the standard SPH when being 

used for high strain hydrodynamic problems with inherent anisotropic deformations, also higher order kernel 

function has better accuracy than the standard cubic kernel function. 

 

Standard SPH Formulation 

 
Fundamentals of the SPH method. 

 

Particles methods are based on quadrature formulas on moving particles                            , P is the set of the 

particles.           is the location of particle i and           is the weight of the particle i. The quadrature formulation 

for a function can be written as: 

        

                                                                                                                                                                               (1) 

    

 

The quadrature formulation (1) together with the definition of smoothing kernel leads to the definition of the 

particle approximation of a function. The interpolated value of a function:           at position     using the SPH 

method is: 

  

                                                                                                                                                                               (2) 

 

 

 

Where the sum is over all particles inside     and within a radius     , W is a spline based interpolation kernel of 

radius     . It mimics the shape of a delta function but without the infinite tails. It is a      function. The kernel 

function is defined as following: 

 

 

                                                                                                                                                                               (3) 
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smoothing length of the kernel. 

 

Pitwtx ii ))(),((
)(txi )(twi

))(()()( txftwdxxf j

Pj

j


=

X




−=
j

jijji

h hxxWxutwxu ),()()())((

)(Xu

 h2
h2 2C







 −

=−
),(

1
),(

yxh

xx

h
hxxW

ji

ji 



16th International LS-DYNA® Users Conference Table of Contents 

May 31-June 2020  3 

Isotropic kernel function options. 

 

The cubic B-spline function has been so far the most widely used smoothing function in the emerged SPH 

literatures since it resembles a Gaussian function while having a narrower compact support. The cubic B-spline 

function is defined: 

 

 

 

 

 

                                                                                                                                                                               (4) 

 

 

 

 

The second derivative of the cubic spline is piecewise linear functions, and accordingly, the stability properties 

can be inferior to those of smoother kernels. In addition, the smoothing function is in pieces, which is slightly 

more difficulty to use compared to one piece smoothing functions.  Morris (1994) introduced higher order 

(quintic) splines that are more closely approximating the Gaussian and more stable and have bigger support size 

too. The quintic spline is: 

 

                

                                                     (5) 

 

Where C is  in one, two and three dimensional space, respectively. This kernel can help 

to reduce the tensile instability due to Eulerian kernel. 

 

The gradient of the function           is given by applying the operator of derivation on the smoothing length: 

 

 

                                                                                                                                                                               (6) 

 

Evaluating an interpolated product of two functions is given by the product of their interpolated values. 
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                                            Fig 1. Two dimensional isotropic kernel function. 

  

 

The ASPH with anisotropic kernel. 

 

In general, the local mean interparticle spacing varies in time, space, as well as direction. The influence domain 

of the smoothing function should represent the variation of the interparticle spacing. The standard SPH method 

with a variable scalar smoothing length can only reflect the interparticle spacing variation in time and space but 

not the direction. It can lose neighbor information in some directions and is not suitable for simulating problems 

with anisotropic deformations. 

 

The ASPH models use an anisotropic algorithm that employs an ellipsoidal smoothing function characterized by 

a different smoothing length along each axis of the ellipsoidal. The smoothing length long each axis is evolved 

so as to follow the variation of the local interparticle separation surrounding each particle. By deforming and 

rotating the ellipsoidal smoothing function so as to follow the anisotropic volume changes associated with each 

particle, ASPH adapts its spatial resolution scale in time, space, and direction. Hence, ASPH was shown to 

significantly improve the spatial resolving capability over that of the standard SPH method for the same number 

of particles used. 

 

The main idea of the ASPH is that in three-dimensional space, the smoothing function is of ellipsoidal shape, 

which can be arbitrarily oriented. A smoothing tensor  can be used to characterize the influence domain of the 

smoothing function 

 

                                                                                                                      (7)                

          

is a second order, real and symmetric tensor, ,  ,  . The eigenvectors of  are 

the directions along the three axes of the ellipsoid and the corresponding eigenvalues are the dimensions of the 

ellipsoid along each axis. SPH can be regarded as a special case of ASPH, with each diagonal element of  
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equal to h while other elements equal to zero. Therefore, one has more freedom with ellipsoidal smoothing 

functions that one has with spherical smoothing functions. 

 

The smoothing function in ASPH can be written as a function of the tensor smoothing length  and the 

normalized position vector: 

                                                                     

 

The  tensor can be evolved both spatially and temporally, nine components of tensor define three vectors that 

adapt their special resolution scale in time, space and direction, the anisotropic volume changes represented by a 

smoothing ellipsoid can be transformed through a local, linear transformation of coordinates into those in which 

the underling anisotropic volume changes appear to be isotropic.  This tensor for each particle is dynamically 

evolved by using the components of the deformation tensor  to follow the local deformation and vorticity of 

the flow. All the SPH equations can now be rewritten in terms of the  tensors and these expressions for  and 

. Three principal axes based on the principal direction of the deformation tensor can be defined for an 

ellipse support domain, three principal vector values (  are updated based on the principal values of 

deformation tensor. 

 

                         
 

                                    Figure 2. Three dimensional anisotropic kernel support function 

 

 

Coordinate transformation between local and global systems: 

 

To search for the influencing nodes and calculate the shape function of the evaluation point, the coordinate of 

the evaluation point should be transformed to the principle orientation of the deformation tensor (local 

coordinate). 

 

                                                                                                                                                              (8) 
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Where is the position vector under the local coordinate,  is the position vector under the global coordinate,  

is the transformation matrix between two coordinate systems. 

 

The weight function should be calculated in the local coordinate system along the principle orientation. And the 

space derivation of the weight function should be transformed back to global coordinate system. 

 

                                                                                                                 (9) 

 

                                                                                                                                       (10) 

 

Where w is weight function.  

 

Continuity equation and Momentum equation. 

 

The particle approximation of continuity equation is defined as: 

 

 

 

                                                                                                                                                                             (11) 

 

 

It is Galilean invariant due to that the positions and velocities appear only as differences, and has good 

numerical conservation properties. iv  is the velocity component at particle i. 

 

The discretized form of the SPH momentum equation is developed as: 
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The above formulation ensures that stress is automatically continuous across material interfaces. Different types 

of SPH momentum equations can be achieved through applying the identity equations into the normal SPH 

momentum equation. Symmetric formulation of SPH momentum equation can reduce the errors arising from 

particle inconsistency problem. 

 

From equation (6), the following particle body forces were derived: 
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Where jiij xxr −= ,   is the viscosity coefficient of the fluid. The pressure ip  are computed via the 

constitutive equation: 

 

                                                               )( 0 −= ii kp                                                                   (14) 

 

where k  is the stiffness of the fluid and 0  is its initial density. 

 

Numerical Examples 

 

ASPH option in the Ls-Dyna: FORM=9,10 for ASPH formulation and ASPH with renormalization formulation 

respectively in *CONTROL_SPH keyword. Those two formulations must be used with the 

*SECTION_SPH_ELLIPSE keyword for the ellipsoidal support of domain, HXCSLH, HYCSLH, HZCSLH 

have to be define to set the scale factor in each direction. The default smoothing kernel function is cubic 

B_spline kernel function with SPHKERN = 0 in *SECTION_SPH keyword. For higher order kernel function, 

set SPHKERN = 1 for quintic spline kernel function with a larger support size which is available for both SPH 

and ASPH formulation (recommend using with HMAX = 3.0 or larger in *SECTION_SPH keyword).  

 
1. Three point bending test with SPH. 

 

                                                    
                                                   Figure 3.  Three point bending test set up 

 

A 3D isotropic plate was modeled by SPH particles under bending test. The plate has the dimension of 

100x40x20, and is loaded as shown in figure 3 with two bottom rigid solid fixed in the space, top rigid solid 

moved with a prescribed motion along z direction. The plate was modeled with 640 SPH particles, and the 

deformation, stresses distribution are plotted and compared for SPH and ASPH method, higher order kernel was 

tested here and compared with standard cubic spline kernel function.  

 

In the model, automatic_ node_ to surface contact was used for the interaction between SPH particles and rigid 

solid elements.  *MAT_57 was used for SPH particles with density equal 1.7e-11, E=2.5.  For ASPH 

formulation, *SECTION_SPH_ELLIPSE with hxcslh = hycslh = hzcslh = 1.2 was used. 
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                       Figure 4. Particle distribution and stress contour for            Figure 5. Particle distribution and stress contour for  

                               SPH with cubic spine kernel at t=1 form=1                       SPH with quintic spline kernel at t=1 Form=1 

 

 

 

                  
 
                         Figure 6. Particle distribution and stress contour for              Figure 7. Particle distribution and stress contour for  

                            ASPH with cubic spine kernel at t=1 form=10                     ASPH with quintic spline kernel at t=1 Form=10 

 

As we can see that in fig 4, the standard SPH formulation have particle clustering and fracture problem around 

the center of the plate, the stresses distribution is non-smooth and irregular. The higher order kernel with 

standard SPH formulation help to reduce the particle clustering and fracture problem greatly, also have much 

smoother stresses distribution than normal cubic b-spline kernel function. 

 

ASPH (form=10) formulation with standard cubic spline kernel function can capture dimension-dependent 

features such as anisotropic deformations with a more generalized elliptical or ellipsoidal influence domain. 

ASPH is shown here to significantly improve the spatial resolving capability over that of the standard SPH 

method for the same number of particles used, has much smoother particle distribution and stress contour 

results than the standard SPH method. Also ASPH with cubic b-spline kernel help to reduce the particle 

clustering and fracture problem greatly. 

 

2. Swegle rubber ring impact with SPH. 
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                                         Figure 8. Swegle rubber ring impact problem setup. 

 

Two 3D isotropic rubber rings modeled with SPH particles impact into each other with initial speed V=50m/s.  

Each ring has outer radius R=40mm, inner radius r=30.5mm and thickness H = 10mm, density of rubber ring 

rho=3.0e-3, E=1401.  The whole setup modeled with 43920 SPH particles and the deformation, stresses 

distribution are plotted and compared for SPH and ASPH method, higher order kernel was tested here and 

compared with standard cubic spline kernel function. The standard SPH integral method (Eulerian kernel) was 

used as interaction method between two rubber rings. 

 

 

                           
 
                       Figure 9. Particle distribution and stress contour for       Figure 10. Particle distribution and stress contour for  

                          SPH with cubic spine kernel at t=0.54 form=1                  SPH with quintic spline kernel at t=0.54 Form=1 
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                      Figure 11. Particle distribution and stress contour for        Figure 12. Particle distribution and stress contour for  

                          ASPH with cubic spine kernel at t=0.54 form=10            ASPH with quintic spline kernel at t=0.54 Form=10 

 

As we can see that in fig 9, the standard SPH formulation have particle clustering and fracture problem around 

the corners that under tension pressure, the stresses distribution is non-smooth and irregular. Those phenomena 

are call the tensile instability since the fractures are not caused by the material failure but by the numerical 

errors. The higher order kernel with standard SPH formulation help to reduce the tensile instabilities around the 

corners greatly, also have much smoother stresses distribution than normal cubic b-spline kernel function. 

 

ASPH (form=10) formulation with standard cubic spline kernel function can capture dimension-dependent 

features such as anisotropic deformations with a more generalized elliptical or ellipsoidal influence domain. 

ASPH is shown here to significantly improve the spatial resolving capability over that of the standard SPH 

method for the same number of particles used, has much smoother particle distribution and stress contour 

results than the standard SPH method (i.e. help to reduce the tensile instability around the corner too). ASPH 

formulation with quintic spline kernel help to reduce the tensile instabilities issue even more compared to the 

ASPH with cubic b-spline kernel option. The results are very close to the results with Lagrangian kernel option 

(form=8, which can totally avoid the tensile instability issue in this case). 

 

CONCLUSION 
 

This paper presents the implementation of an adaptive smoothed particle hydrodynamics (ASPH) method for 

high strain Lagrangian hydrodynamics with material strength in LS-DYNA. In ASPH, the isotropic kernel in 

the standard SPH is replaced with an anisotropic kernel whose axes evolve automatically to follow the mean 

particle spacing as it varies in time, space, and direction around each particle. By deforming and rotating these 

ellipsoidal kernels so as to follow the anisotropy of volume changes local to each particle, ASPH can capture 

dimension-dependent features such as anisotropic deformations with a more generalized elliptical or ellipsoidal 

influence domain. Some numerical examples are investigated using both SPH and ASPH, also higher order 

kernel function is studied for both SPH and ASPH formulation. The comparative studies show that ASPH has 

better accuracy than the standard SPH when being used for high strain hydrodynamic problems with inherent 

anisotropic deformations, also higher order kernel function has better accuracy than the standard cubic kernel 

function 
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