![](https://static.wixstatic.com/media/157719_8c0980cc0cd34f0ba9da68a5576a543e~mv2.jpg/v1/fill/w_1066,h_716,al_c,q_85,enc_avif,quality_auto/157719_8c0980cc0cd34f0ba9da68a5576a543e~mv2.jpg)
![](https://static.wixstatic.com/media/933831_91c1122ba8a0410da5c2080c1f625d38~mv2.gif)
![](https://static.wixstatic.com/media/933831_66cda1b2767e4a4aa3329f9e6f5bcfe2~mv2.gif)
The deep material network can be used to learn the proper topological structure of a given RVE. In the following example, treemaps of trained material networks for three different 2D RVEs with network depth after 10000 epochs (1% training error) are shown.
Material networks can also be trained for 3D RVEs. Applications to polymer nanocomposite and CFRP systems are addressed.
​
Geometric RVE information, such as the volume fraction, can be accurately extracted from pure mechanical data. The material network is intrinsically parameterized for material design purpose.
​
Other than the virtual material testing data from RVE analysis, experimental data can also be incorporated in the offline-training process.
![](https://static.wixstatic.com/media/933831_a7ad174874aa41eeb2d795d9770969cf~mv2.png/v1/crop/x_7,y_0,w_142,h_145/fill/w_82,h_84,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/933831_a7ad174874aa41eeb2d795d9770969cf~mv2.png)
![](https://static.wixstatic.com/media/933831_d0dd97200c1b4f3e9deb124b766210a2~mv2.gif)
![](https://static.wixstatic.com/media/933831_1dc44b1f3ad6491bb51b96acbf60245d~mv2.gif)
![](https://static.wixstatic.com/media/933831_fa8cdbf467784e6ea796affbb5e6e875~mv2.png/v1/crop/x_5,y_2,w_146,h_149/fill/w_85,h_87,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/933831_fa8cdbf467784e6ea796affbb5e6e875~mv2.png)
![](https://static.wixstatic.com/media/933831_aa93736788c54baf9073698f39951dd4~mv2.png/v1/crop/x_5,y_3,w_144,h_146/fill/w_83,h_84,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/933831_aa93736788c54baf9073698f39951dd4~mv2.png)
![](https://static.wixstatic.com/media/933831_e6aa9b54ff864abf9047f8c77007216a~mv2.gif)
![](https://static.wixstatic.com/media/933831_70a888d6288b4ecfa0600da4235953c0~mv2.gif)
![](https://static.wixstatic.com/media/157719_19055e7632364f9885262690a7e7ea00~mv2.png/v1/fill/w_296,h_222,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/157719_19055e7632364f9885262690a7e7ea00~mv2.png)
Histories of training and validation errors
![](https://static.wixstatic.com/media/157719_e2f8b5ab1c6a4cb992d76f384f46b901~mv2.png/v1/fill/w_108,h_108,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/157719_e2f8b5ab1c6a4cb992d76f384f46b901~mv2.png)
![](https://static.wixstatic.com/media/933831_b9734b590c864ad6a8e4db56f7accde4~mv2.gif/v1/fill/w_180,h_135,al_c,usm_0.66_1.00_0.01,pstr/933831_b9734b590c864ad6a8e4db56f7accde4~mv2.gif)
![](https://static.wixstatic.com/media/157719_ed98a44da057495494d08a08108d7e66~mv2.png/v1/fill/w_185,h_108,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/157719_ed98a44da057495494d08a08108d7e66~mv2.png)
![](https://static.wixstatic.com/media/933831_e9cd3c5bbd1e40a587a38f7a342b4ee9~mv2.gif/v1/fill/w_179,h_134,al_c,usm_0.66_1.00_0.01,pstr/933831_e9cd3c5bbd1e40a587a38f7a342b4ee9~mv2.gif)
Evolution of topological structures of 2D and 3D material networks